Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
medrxiv; 2024.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2024.01.23.24301671

ABSTRACT

Objectives: 1. To plot the trajectory of humoral and cellular immune responses to the primary (two-dose) COVID-19 mRNA series and the third/booster dose in B-cell-depleted multiple sclerosis (MS) patients up to 2 years post-vaccination; 2. to identify predictors of immune responses to vaccination; and 3. to assess the impact of intercurrent COVID-19 infections on SARS CoV-2-specific immunity. Methods: 60 Ocrelizumab-treated MS patients were enrolled from NYU (New York) and University of Colorado (Anschutz) MS Centers. Samples were collected pre-vaccination, and then 4, 12, 24, and 48 weeks post-primary series, and 4, 12, 24, and 48 weeks post-booster. Binding anti-Spike antibody responses were assessed with multiplex bead-based immunoassay (MBI) and electrochemiluminescence (Elecsys(C), Roche Diagnostics), and neutralizing antibody responses with live-virus immunofluorescence-based microneutralization assay. Spike-specific cellular responses were assessed with IFN{gamma}/IL-2 ELISpot (Invitrogen) and, in a subset, by sequencing complementary determining regions (CDR)-3 within T-cell receptors (Adaptive Biotechnologies). A linear mixed effect model was used to compare antibody and cytokine levels across time points. Multivariate analyses identified predictors of immune responses. Results: The primary vaccination induced an 11-208-fold increase in binding and neutralizing antibody levels and a 3-4-fold increase in IFN{gamma}/IL-2 responses, followed by a modest decline in antibody but not cytokine responses. Booster dose induced a further 3-5-fold increase in binding antibodies and 4-5-fold increase in IFN{gamma}/IL-2, which were maintained for up to 1 year. Infections had a variable impact on immunity. Interpretation: Humoral and cellular benefits of COVID-19 vaccination in B-cell-depleted MS patients were sustained for up to 2 years when booster doses were administered.


Subject(s)
Multiple Sclerosis , COVID-19
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.01.24.525203

ABSTRACT

The human immune response to SARS-CoV-2 antigen after infection or vaccination is defined by the durable production of antibodies and T cells. Population-based monitoring typically focuses on antibody titer, but there is a need for improved characterization and quantification of T cell responses. Here, we utilize multimodal sequencing technologies to perform a longitudinal analysis of circulating human leukocytes collected before and after BNT162b2 immunization. Our data reveal distinct subpopulations of CD8+ T cells which reliably appear 28 days after prime vaccination (7 days post boost). Using a suite of cross-modality integration tools, we define their transcriptome, accessible chromatin landscape, and immunophenotype, and identify unique biomarkers within each modality. By leveraging DNA-oligo-tagged peptide-MHC multimers and T cell receptor sequencing, we demonstrate that this vaccine-induced population is SARS-CoV-2 antigen-specific and capable of rapid clonal expansion. Moreover, we also identify these CD8+ populations in scRNA-seq datasets from COVID-19 patients and find that their relative frequency and differentiation outcomes are predictive of subsequent clinical outcomes. Our work contributes to our understanding of T cell immunity, and highlights the potential for integrative and multimodal analysis to characterize rare cell populations.


Subject(s)
COVID-19
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.11.15.516351

ABSTRACT

Adaptive immune responses are induced by vaccination and infection, yet little is known about how CD4+ T cell memory differs between these two contexts. Notable differences in humoral and cellular immune responses to primary mRNA vaccination were observed and associated with prior COVID-19 history, including in the establishment and recall of Spike-specific CD4+ T cells. It was unclear whether CD4+ T cell memory established by infection or mRNA vaccination as the first exposure to Spike was qualitatively similar. To assess whether the mechanism of initial memory T cell priming affected subsequent responses to Spike protein, 14 people who were receiving a third mRNA vaccination, referenced here as the booster, were stratified based on whether the first exposure to Spike protein was by viral infection or immunization (infection-primed or vaccine-primed). Using multimodal scRNA-seq of activation-induced marker (AIM)-reactive Spike-specific CD4+ T cells, we identified 220 differentially expressed genes between infection- and vaccine-primed patients at the post-booster time point. Infection-primed participants had greater expression of genes related to cytotoxicity and interferon signaling. Gene set enrichment analysis (GSEA) revealed enrichment for Interferon Alpha, Interferon Gamma, and Inflammatory response gene sets in Spike-specific CD4+ T cells from infection-primed individuals, whereas Spike-specific CD4+ T cells from vaccine-primed individuals had strong enrichment for proliferative pathways by GSEA. Finally, SARS-CoV-2 breakthrough infection in vaccine-primed participants resulted in subtle changes in the transcriptional landscape of Spike-specific memory CD4+ T cells relative to pre-breakthrough samples but did not recapitulate the transcriptional profile of infection-primed Spike-specific CD4+ T cells. Together, these data suggest that CD4+ T cell memory is durably imprinted by the inflammatory context of SARS-CoV-2 infection, which has implications for personalization of vaccination based on prior infection history.


Subject(s)
Memory Disorders , Breakthrough Pain , Virus Diseases , Drug-Related Side Effects and Adverse Reactions , COVID-19
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.07.12.22277336

ABSTRACT

Background: Protection from SARS-CoV-2 vaccines wanes over time and is compounded by emerging variants including Omicron subvariants. This study evaluated safety and immunogenicity of SARS-CoV-2 variant vaccines. Methods: This phase 2 open-label, randomized trial enrolled healthy adults previously vaccinated with a SARS-CoV-2 primary series and a single boost. Eligible participants were randomized to one of six Moderna COVID19 mRNA vaccine arms (50 mcg dose): Prototype (mRNA-1273), Omicron BA.1+Beta (1 or 2 doses), Omicron BA.1+Delta, Omicron BA.1 monovalent, and Omicron BA.1+Prototype. Neutralization antibody titers (ID50) were assessed for D614G, Delta, Beta and Omicron BA.1 variants and Omicron BA.2.12.1 and BA.4/BA.5 subvariants 15 days after vaccination. Results: From March 30 to May 6, 2022, 597 participants were randomized and vaccinated. Median age was 53 years, and 20% had a prior SARS-CoV-2 infection. All vaccines were safe and well-tolerated. Day 15 geometric mean titers (GMT) against D614G were similar across arms and ages, and higher with prior infection. For uninfected participants, Day 15 Omicron BA.1 GMTs were similar across Omicron-containing vaccine arms (3724-4561) and higher than Prototype (1,997 [95%CI:1,482-2,692]). The Omicron BA.1 monovalent and Omicron BA.1+Prototype vaccines induced a geometric mean ratio (GMR) to Prototype for Omicron BA.1 of 2.03 (97.5%CI:1.37-3.00) and 1.56 (97.5%CI:1.06-2.31), respectively. A subset of samples from uninfected participants in four arms were also tested in a different laboratory at Day 15 for neutralizing antibody titers to D614G and Omicron subvariants BA.1, BA.2.12.2 and BA.4/BA.5. Omicron BA.4/BA.5 GMTs were approximately one third BA.1 GMTs (Prototype 517 [95%CI:324-826] vs. 1503 [95%CI:949-2381]; Omicron BA.1+Beta 628 [95%CI:367-1,074] vs. 2125 [95%CI:1139-3965]; Omicron BA.1+Delta 765 [95%CI:443-1,322] vs. 2242 [95%CI:1218-4128] and Omicron BA.1+Prototype 635 [95%CI:447-903] vs. 1972 [95%CI:1337-2907). Conclusions: Higher Omicron BA.1 titers were observed with Omicron-containing vaccines compared to Prototype vaccine and titers against Omicron BA.4/BA.5 were lower than against BA.1 for all candidate vaccines. Clinicaltrials.gov: NCT05289037


Subject(s)
Infections , COVID-19
5.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.07.01.22277058

ABSTRACT

Background: Aerosol-generating procedures increase the risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among health care workers (HCWs). An effective pre-exposure prophylaxis would mitigate this risk. Objective: To determine the efficacy of pre-exposure prophylactic hydroxychloroquine for the prevention of SARS-CoV-2 infection and symptomatic coronavirus 19 disease (COVID-19) among HCWs at high occupational risk of SARS-CoV-2 exposure. Methods: 130 HCWs in the New York University Langone Health System (NYULHS) who performed aerosol-generating procedures on patients with COVID-19 or provided bedside care for inpatients with COVID-19 or persons with suspected COVID-19 in an emergency department, for at least three shifts in a 7-day period, during the first 2020 COVID-19 wave in New York City were enrolled. Participants elected to take oral hydroxychloroquine, 600 mg on day 1 followed by 200 mg daily, or not take hydroxychloroquine for up to 90 days. Participants self-collected dried blood spots and completed digital questionnaires regarding COVID-19 symptoms, adverse events, and other COVID-19 medication use. Results: Six participants (7.5%) seroconverted during the trial: four who took hydroxychloroquine (6.8%) and two who declined hydroxychloroquine (9.5%). All participants not taking hydroxychloroquine reported COVID-19 symptoms at seroconversion compared to one of four participants (25%) who took hydroxychloroquine. Adverse events occurred in eight participants (9.6%) on hydroxychloroquine and were mostly mild. Conclusions: This study (ClinicalTrials.gov NCT04354870) did not demonstrate a statistically significant difference in SARS-CoV-2 seroconversion associated with hydroxychloroquine pre-exposure prophylaxis among HCWs at high risk of occupational SARS-CoV-2 exposure, although was underpowered and a high rate of hydroxychloroquine discontinuation was observed.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19
6.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.06.28.22276989

ABSTRACT

Objective: To compare 'hybrid immunity' (prior COVID-19 infection plus vaccination) and post-vaccination immunity to SARS CoV-2 in MS patients on different disease-modifying therapies (DMTs) and to assess the impact of vaccine product and race/ethnicity on post-vaccination immune responses. Methods: Consecutive MS patients from NYU MS Care Center (New York, NY), aged 18-60, who completed COVID-19 vaccination series [≥]6 weeks previously were evaluated for SARS CoV-2-specific antibody responses with electro-chemiluminescence and multiepitope bead-based immunoassays and, in a subset, live virus immunofluorescence-based microneutralization assay. SARS CoV-2-specific cellular responses were assessed with cellular stimulation TruCulture IFN{gamma} and IL-2 assay and, in a subset, with IFN{gamma} and IL-2 ELISpot assays. Multivariate analyses examined associations between immunologic responses and prior COVID-19 infection while controlling for age, sex, DMT at vaccination, time-to-vaccine, and vaccine product. Results: Between 6/01/2021-11/11/2021, 370 MS patients were recruited (mean age 40.6 years; 76% female; 53% non-White; 22% with prior infection; common DMT classes: ocrelizumab 40%; natalizumab 15%, sphingosine-1-phosphate receptor modulators 13%; and no DMT 8%). Vaccine-to-collection time was 18.7 ({+/-}7.7) weeks and 95% of patients received mRNA vaccines. In multivariate analyses, patients with laboratory-confirmed prior COVID-19 infection had significantly increased antibody and cellular post-vaccination responses compared to those without prior infection. Vaccine product and DMT class were independent predictors of antibody and cellular responses, while race/ethnicity was not. Interpretation: Prior COVID-19 infection is associated with enhanced antibody and cellular post-vaccine responses independent of DMT class and vaccine type. There were no differences in immune responses across race/ethnic groups.


Subject(s)
Encephalomyelitis, Acute Disseminated , Multiple Sclerosis , COVID-19
7.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.06.13.22276354

ABSTRACT

ImportanceCOVID-19 vaccination is recommended during pregnancy for the protection of the mother. Little is known about the immune response to booster vaccinations during pregnancy. ObjectiveTo measure immune responses to COVID-19 primary and booster mRNA vaccination during pregnancy and transplacental antibody transfer to the newborn. DesignProspective cohort study of pregnant participants enrolled from July 2021 to January 2022, with follow up through and up to 12 months after delivery. SettingMulticenter study conducted at 9 academic sites. ParticipantsPregnant participants who received COVID-19 vaccination during pregnancy and their newborns. Exposure(s)Primary or booster COVID-19 mRNA vaccination during pregnancy. Main Outcome(s) and Measure(s)SARS-CoV-2 binding and neutralizing antibody (nAb) titers after primary or booster COVID-19 mRNA vaccination during pregnancy and antibody transfer to the newborn. Immune responses were compared between primary and booster vaccine recipients in maternal sera at delivery and in cord blood, after adjusting for days since last vaccination. ResultsIn this interim analysis, 167 participants received a primary 2-dose series and 73 received a booster dose of mRNA vaccine during pregnancy. Booster vaccination resulted in significantly higher binding and nAb titers, including to the Omicron BA.1 variant, in maternal serum at delivery and cord blood compared to a primary 2-dose series (range 0.55 to 0.88 log10 higher, p<0.0001 for all comparisons). Although levels were significantly lower than to the prototypical D614G variant, nAb to Omicron were present at delivery in 9% (GMT ID50 12.7) of Pfizer and 22% (GMT ID50 14.7) of Moderna recipients, and in 73% (GMT ID50 60.2) of boosted participants (p<0.0001). Transplacental antibody transfer was efficient regardless of vaccination regimen (median transfer ratio range: 1.55-1.77 for binding IgG and 1.00-1.78 for nAb). Conclusions and RelevanceCOVID-19 mRNA vaccination during pregnancy elicited robust immune responses in mothers and efficient transplacental antibody transfer to the newborn. A booster dose during pregnancy significantly increased maternal and cord blood antibody levels, including against Omicron. Findings support continued use of COVID-19 vaccines during pregnancy, including booster doses. Trial Registrationclinical trials.gov; Registration Number: NCT05031468; https://clinicaltrials.gov/ct2/show/NCT05031468 Key PointsO_ST_ABSQuestionC_ST_ABSWhat is the immune response after COVID-19 booster vaccination during pregnancy and how does receipt of a booster dose impact transplacental antibody transfer to the newborn? FindingsReceipt of COVID-19 mRNA vaccines during pregnancy elicited robust binding and neutralizing antibody responses in the mother and in the newborn. Booster vaccination during pregnancy elicited significantly higher antibody levels in mothers at delivery and cord blood than 2-dose vaccination, including against the Omicron BA.1 variant. MeaningCOVID-19 vaccines, especially booster doses, should continue to be strongly recommended during pregnancy.


Subject(s)
COVID-19
9.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.13.22268861

ABSTRACT

As part of an ongoing study assessing homologous and heterologous booster vaccines, following primary EUA series, we assessed neutralization of D614G and Omicron variants prior to and 28 days after boost. Subset analysis was done in six combinations (N = 10/group): four homologous primary-booster combinations included mRNA-1273 two-dose priming followed by boosting with 100-g or 50-g mRNA-1273, Ad26.COV2.S single-dose priming followed by Ad26.COV2.S booster and BNT162b2 two-dose priming followed by BNT162b2 boosting; and two heterologous primary-booster combinations: BNT162b2 followed by Ad26.COV2.S and Ad26.COV2.S followed by BNT162b2. Neutralizing antibody (Nab) titers to D614G on the day of boost (baseline) were detected in 85-100% of participants, with geometric mean titers (GMT) of 71-343 in participants who received an mRNA vaccine series versus GMTs of 35-41 in participants primed with Ad26.OV2.S. Baseline NAb titers to Omicron were detected in 50-90% of participants who received an mRNA vaccine series (GMT range 12.8-24.5) versus 20-25% among participants primed with Ad26.COV2.S. The booster dose increased the neutralizing GMT in most combinations to above 1000 for D614G and above 250 for Omicron by Day 29. Homologous prime-boost Ad26.COV2.S had the lowest NAb on Day 29 (D614G GMT 128 and Omicron GMT 45). Results were similar between age groups. Most homologous and heterologous boost combinations examined will increase humoral immunity to the Omicron variant.


Subject(s)
Protein S Deficiency
10.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.10.22268752

ABSTRACT

Objective: To determine the impact of MS disease-modifying therapies (DMTs) on the development of cellular and humoral immunity to SARS-CoV-2 infection. Methods: MS patients aged 18-60 were evaluated for anti-nucleocapsid and anti-Spike RBD antibody with electro-chemiluminescence immunoassay; antibody responses to Spike protein, RBD, N-terminal domain with multiepitope bead-based immunoassays (MBI); live virus immunofluorescence-based microneutralization assay; T-cell responses to SARS-CoV-2 Spike using TruCulture ELISA; and IL-2 and IFN{gamma} ; ELISpot assays. Assay results were compared by DMT class. Spearman correlation and multivariate analyses were performed to examine associations between immunologic responses and infection severity. Results: Between 1/6/2021 and 7/21/2021, 389 MS patients were recruited (mean age 40.3 years; 74% female; 62% non-White). Most common DMTs were ocrelizumab (OCR) - 40%; natalizumab - 17%, Sphingosine 1-phosphate receptor (S1P) modulators -12%; and 15% untreated. 177 patients (46%) had laboratory evidence of SARS-CoV-2 infection; 130 had symptomatic infection, 47 - asymptomatic. Antibody responses were markedly attenuated in OCR compared to other groups (p[≤]0.0001). T-cell responses (IFN{gamma}) were decreased in S1P (p=0.03), increased in natalizumab (p<0.001), and similar in other DMTs, including OCR. Cellular and humoral responses were moderately correlated in both OCR (r=0.45, p=0.0002) and non-OCR (r=0.64, p<0.0001). Immune responses did not differ by race/ethnicity. COVID-19 clinical course was mostly non-severe and similar across DMTs; 7% (9/130) were hospitalized. Interpretation: DMTs had differential effects on humoral and cellular immune responses to SARS-CoV-2 infection. Immune responses did not correlate with COVID-19 clinical severity in this relatively young and non-disabled group of MS patients.


Subject(s)
Sclerosis , Severe Acute Respiratory Syndrome , Multiple Sclerosis , COVID-19
11.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.28.474369

ABSTRACT

Currently authorized vaccines for SARS-CoV-2 have been highly successful in preventing infection and lessening disease severity. The vaccines maintain effectiveness against SARS-CoV-2 Variants of Concern but the heavily mutated, highly transmissible Omicron variant poses an obstacle both to vaccine protection and monoclonal antibody therapies. Analysis of the neutralization of Omicron spike protein-pseudotyped lentiviruses showed a 26-fold relative resistance (compared to D614G) to neutralization by convalescent sera and 26-34-fold resistance to Pfizer BNT162b2 and Moderna vaccine-elicited antibodies following two immunizations. A booster immunization increased neutralizing titers against Omicron by 6-8-fold. Previous SARS-CoV-2 infection followed by vaccination resulted in the highest neutralizing titers against Omicron. Regeneron REGN10933 and REGN10987, and Lilly LY-CoV555 and LY-CoV016 monoclonal antibodies were ineffective against Omicron, while Sotrovimab was partially effective. The results highlight the benefit of a booster immunization in providing protection against Omicron but demonstrate the challenge to monoclonal antibody therapies.


Subject(s)
COVID-19
12.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.10.19.463727

ABSTRACT

Recently identified SARS-CoV-2 variants Mu and C.1.2 have mutations in the receptor binding domain and N- and C-terminal domains that might confer resistance to natural and vaccine-elicited antibody. Analysis with pseudotyped lentiviruses showed that viruses with the Mu and C.1.2 spike proteins were partially resistant to neutralization by antibodies in convalescent sera and those elicited by mRNA and adenoviral vector-based vaccine-elicited antibodies. Virus with the C.1.2 variant spike, which is heavily mutated, was more neutralization-resistant than that of any of variants of concern. The resistance of the C.1.2 spike was caused by a combination of the RBD mutations N501Y, Y449H and E484K and the NTD mutations. Although Mu and C.1.2 were partially resistant to neutralizing antibody, neutralizing titers elicited by mRNA vaccination remained above what is found in convalescent sera and thus are likely to remain protective against severe disease. The neutralizing titers of sera from infection-experienced BNT162b2-vaccinated individuals, those with a history of previous SARS-CoV-2 infection, were as much as 15-fold higher than those of vaccinated individuals without previous infection and effectively neutralized all of the variants. The findings demonstrate that individuals can raise a broadly neutralizing humoral response by generating a polyclonal response to multiple spike protein epitopes that should protect against current and future variants.


Subject(s)
COVID-19
13.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.10.21264827

ABSTRACT

Background: While Coronavirus disease 2019 (Covid-19) vaccines are highly effective, breakthrough infections are occurring. Booster vaccinations have recently received emergency use authorization (EUA) for certain populations but are restricted to homologous mRNA vaccines. We evaluated homologous and heterologous booster vaccination in persons who had received an EUA Covid-19 vaccine regimen. Methods: In this phase 1/2 open-label clinical trial conducted at ten U.S. sites, adults who received one of three EUA Covid-19 vaccines at least 12 weeks prior to enrollment and had no reported history of SARS-CoV-2 infection received a booster injection with one of three vaccines (Moderna mRNA-1273 100-mcg, Janssen Ad26.COV2.S 5x1010 virus particles, or Pfizer-BioNTech BNT162b2 30-mcg; nine combinations). The primary outcomes were safety, reactogenicity, and humoral immunogenicity on study days 15 and 29. Results: 458 individuals were enrolled: 154 received mRNA-1273, 150 received Ad26.CoV2.S, and 154 received BNT162b2 booster vaccines. Reactogenicity was similar to that reported for the primary series. Injection site pain, malaise, headache, and myalgia occurred in more than half the participants. Booster vaccines increased the neutralizing activity against a D614G pseudovirus (4.2-76-fold) and binding antibody titers (4.6-56-fold) for all combinations; homologous boost increased neutralizing antibody titers 4.2-20-fold whereas heterologous boost increased titers 6.2-76-fold. Day 15 neutralizing and binding antibody titers varied by 28.7-fold and 20.9-fold, respectively, across the nine prime-boost combinations. Conclusion: Homologous and heterologous booster vaccinations were well-tolerated and immunogenic in adults who completed a primary Covid-19 vaccine regimen at least 12 weeks earlier.


Subject(s)
Pain , Headache , Severe Acute Respiratory Syndrome , Breakthrough Pain , Myalgia , COVID-19
14.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.08.03.454782

ABSTRACT

Antibody responses serve as the primary protection against SARS-CoV-2 infection through neutralization of viral entry into cells. We have developed a two-dimensional multiplex bead binding assay (2D-MBBA) that quantifies multiple antibody isotypes against multiple antigens from a single measurement. Here, we applied our assay to profile IgG, IgM and IgA levels against the spike antigen, its receptor-binding domain and natural and designed mutants. Machine learning algorithms trained on the 2D-MBBA data substantially improve the prediction of neutralization capacity against the authentic SARS-CoV-2 virus of serum samples of convalescent patients. The algorithms also helped identify a set of antibody isotype-antigen datasets that contributed to the prediction, which included those targeting regions outside the receptor-binding interface of the spike protein. We applied the assay to profile samples from vaccinated, immune-compromised patients, which revealed differences in the antibody profiles between convalescent and vaccinated samples. Our approach can rapidly provide deep antibody profiles and neutralization prediction from essentially a drop of blood without the need of BSL-3 access and provides insights into the nature of neutralizing antibodies. It may be further developed for evaluating neutralizing capacity for new variants and future pathogens.


Subject(s)
COVID-19
15.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.19.452771

ABSTRACT

The increasing prevalence of SARS-CoV-2 variants has raised concerns regarding possible decreases in vaccine efficacy. Here, neutralizing antibody titers elicited by mRNA-based and an adenoviral vector-based vaccine against variant pseudotyped viruses were compared. BNT162b2 and mRNA-1273-elicited antibodies showed modest neutralization resistance against Beta, Delta, Delta plus and Lambda variants whereas Ad26.COV2.S-elicited antibodies from a significant fraction of vaccinated individuals were of low neutralizing titer (IC50 <50). The data underscore the importance of surveillance for breakthrough infections that result in severe COVID-19 and suggest the benefit of a second immunization following Ad26.COV2.S to increase protection against the variants.


Subject(s)
COVID-19 , Breakthrough Pain
16.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.02.450959

ABSTRACT

The SARS-CoV-2 lambda variant (lineage C.37) was designated by the World Health Organization as a variant of interest and is currently increasing in prevalence in South American and other countries. The lambda spike protein contains novel mutations within the receptor binding domain (L452Q and F490S) that may contribute to its increased transmissibility and could result in susceptibility to re-infection or a reduction in protection provided by current vaccines. In this study, the infectivity and susceptibility of viruses with the lambda variant spike protein to neutralization by convalescent sera and vaccine-elicited antibodies was tested. Virus with the lambda spike had higher infectivity and was neutralized by convalescent sera and vaccine-elicited antibodies with a relatively minor 2.3-3.3-fold decrease in titer on average. The virus was neutralized by the Regeneron therapeutic monoclonal antibody cocktail with no loss of titer. The results suggest that vaccines in current use will remain protective against the lambda variant and that monoclonal antibody therapy will remain effective.

17.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.14.444076

ABSTRACT

Highly transmissible SARS-CoV-2 variants recently identified in India designated B.1.617 and B.1.618 have mutations within the spike protein that may contribute to their increased transmissibility and that could potentially result in re-infection or resistance to vaccine-elicited antibody. B.1.617 encodes a spike protein with mutations L452R, E484Q, D614G and P681R while the B.1.618 spike has mutations {Delta}145-146, E484K and D614G. We generated lentiviruses pseudotyped by the variant proteins and determined their resistance to neutralization by convalescent sera, vaccine-elicited antibodies and therapeutic monoclonal antibodies. Viruses with B.1.617 and B.1.618 spike were neutralized with a 2-5-fold decrease in titer by convalescent sera and vaccine-elicited antibodies. The E484Q and E484K versions were neutralized with a 2-4-fold decrease in titer. Virus with the B.1.617 spike protein was neutralized with a 4.7-fold decrease in titer by the Regeneron monoclonal antibody cocktail as a result of the L452R mutation. The modest neutralization resistance of the variant spike proteins to vaccine elicited antibody suggests that current vaccines will remain protective against the B.1.617 and B.1.618 variants.

18.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.11.21256917

ABSTRACT

Objective: To investigate the humoral and cellular immune response to mRNA COVID-19 vaccines in patients with immune-mediated inflammatory diseases (IMIDs) on immunomodulatory treatment. Methods: Established patients at NYU Langone Health with IMID (n=51) receiving the BNT162b2 mRNA vaccination were assessed at baseline and after second immunization. Healthy subjects served as controls (n=26). IgG antibody responses to the spike protein were analyzed for humoral response. Cellular immune response to SARS-CoV-2 was further analyzed using high-parameter spectral flow cytometry. A second independent, validation cohort of controls (n=182) and patients with IMID (n=31) from Erlangen, Germany were also analyzed for humoral immune response. Results: Although healthy subjects (n=208) and IMID patients on biologic treatments (mostly on TNF blockers, n=37) demonstrate robust antibody responses (over 90%), those patients with IMID on background methotrexate (n=45) achieve an adequate response in only 62.2% of cases. Similarly, IMID patients do not demonstrate an increase in CD8+ T cell activation after vaccination. Conclusions: In two independent cohorts of IMID patients, methotrexate, a widely used immunomodulator for the treatment of several IMIDs, adversely affected humoral and cellular immune response to COVID-19 mRNA vaccines. Although precise cut offs for immunogenicity that correlate with vaccine efficacy are yet to be established, our findings suggest that different strategies may need to be explored in patients with IMID taking methotrexate to increase the chances of immunization efficacy against SARS-CoV-2 as has been demonstrated for augmenting immunogenicity to other viral vaccines.


Subject(s)
COVID-19
19.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.05.442873

ABSTRACT

High error rates of viral RNA-dependent RNA polymerases lead to diverse intra-host viral populations during infection. Errors made during replication that are not strongly deleterious to the virus can lead to the generation of minority variants. However, accurate detection of minority variants in viral sequence data is complicated by errors introduced during sample preparation and data analysis. We used synthetic RNA controls and simulated data to test seven variant calling tools across a range of allele frequencies and simulated coverages. We show that choice of variant caller, and use of replicate sequencing have the most significant impact on single nucleotide variant (SNV) discovery and demonstrate how both allele frequency and coverage thresholds impact both false discovery and false negative rates. We use these parameters to find minority variants in sequencing data from SARS-CoV-2 clinical specimens and provide guidance for studies of intrahost viral diversity using either single replicate data or data from technical replicates. Our study provides a framework for rigorous assessment of technical factors that impact SNV identification in viral samples and establishes heuristics that will inform and improve future studies of intrahost variation, viral diversity, and viral evolution. IMPORTANCEWhen viruses replicate inside a host, the virus replication machinery makes mistakes. Over time, these mistakes create mutations that result in a diverse population of viruses inside the host. Mutations that are neither lethal to the virus, nor strongly beneficial, can lead to minority variants that are minor members of the virus population. However, preparing samples for sequencing can also introduce errors that resemble minority variants, resulting in inclusion of false positive data if not filtered correctly. In this study, we aimed to determine the best methods for identification and quantification of these minority variants by testing the performance of seven commonly used variant calling tools. We used simulated and synthetic data to test their performance against a true set of variants, and then used these studies to inform variant identification in data from clinical SARS-CoV-2 clinical specimens. Together, analyses of our data provide extensive guidance for future studies of viral diversity and evolution.

20.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.20.21255677

ABSTRACT

Both SARS-CoV-2 infection and vaccination elicit potent immune responses. A number of studies have described immune responses to SARS-CoV-2 infection. However, beyond antibody production, immune responses to COVID-19 vaccines remain largely uncharacterized. Here, we performed multimodal single-cell sequencing on peripheral blood of patients with acute COVID- 19 and healthy volunteers before and after receiving the SARS-CoV-2 BNT162b2 mRNA vaccine to compare the immune responses elicited by the virus and by this vaccine. Phenotypic and transcriptional profiling of immune cells, coupled with reconstruction of the B and T cell antigen receptor rearrangement of individual lymphocytes, enabled us to characterize and compare the host responses to the virus and to defined viral antigens. While both infection and vaccination induced robust innate and adaptive immune responses, our analysis revealed significant qualitative differences between the two types of immune challenges. In COVID-19 patients, immune responses were characterized by a highly augmented interferon response which was largely absent in vaccine recipients. Increased interferon signaling likely contributed to the observed dramatic upregulation of cytotoxic genes in the peripheral T cells and innate-like lymphocytes in patients but not in immunized subjects. Analysis of B and T cell receptor repertoires revealed that while the majority of clonal B and T cells in COVID-19 patients were effector cells, in vaccine recipients clonally expanded cells were primarily circulating memory cells. Importantly, the divergence in immune subsets engaged, the transcriptional differences in key immune populations, and the differences in maturation of adaptive immune cells revealed by our analysis have far-ranging implications for immunity to this novel pathogen.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL